A novel bioactive osteogenesis scaffold delivers ascorbic acid, β-glycerophosphate, and dexamethasone in vivo to promote bone regeneration
نویسندگان
چکیده
Ascorbic acid, β-glycerophosphate, and dexamethasone have been used in osteogenesis differentiation medium for in vitro cell culture, nothing is known for delivering these three bioactive compounds in vivo. In this study, we synthesized a novel bioactive scaffold by combining these three compounds with a lysine diisocyanate-based polyurethane. These bioactive compounds were released from the scaffold during the degradation process. The cell culture showed that the sponge-like structure in the scaffold was critical in providing a large surface area to support cell growth and all degradation products of the polymer were non-toxic. This bioactive scaffold enhanced the bone regeneration as evidenced by increasing the expression of three bone-related genes including collagen type I, Runx-2 and osteocalcin in rabbit bone marrow stem cells (BMSCs) in vitro and in vivo. The osteogenesis differentiation of BMSCs cultured in this bioactive scaffold was similar to that in osteogenesis differentiation medium and more extensive in this bioactive scaffold compared to the scaffold without these three bioactive compounds. These results indicated that the scaffold containing three bioactive compounds was a good osteogenesis differentiation promoter to enhance the osteogenesis differentiation and new bone formation in vivo.
منابع مشابه
Bone regeneration with osteogenic matrix cell sheet and tricalcium phosphate: An experimental study in sheep
AIM To determine the effects of a cell sheet created from sheep bone marrow and tricalcium phosphate (TCP) on osteogenesis. METHODS Bone marrow cells were harvested from a sheep and cultured in a minimal essential medium (MEM) containing ascorbic acid phosphate (AscP) and dexamethasone (Dex). After 2 wk, the formed osteogenic matrix cell sheet was lifted from the culture dish using a scraper....
متن کاملEffect of Dual Releasing of β-glycerophosphate and Dexamethasone from Ti Nanostructured Surface for Using in Orthopedic Applications
Nano-structured surface and its ability to dual release of osteogenic and anti-inflammatory agents have a positive effect on the success of using titanium in orthopedic applications. For this purpose, TiO2 nanotubes (TNTs) were created via anodization method on Ti sheets and loaded by β-glycerophosphate (GP) and dexamethasone (DEX) as osteogenic and anti-inflammatory agents, respecti...
متن کاملPorous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.
In this study, ionic immobilization of dexamethasone (DEX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres was performed on the hydroxyapatite (HAp) scaffold surfaces. It was hypothesized that in vivo bone regeneration could be enhanced with HAp scaffolds containing DEX-loaded PLGA microspheres compared to the use of HAp scaffolds alone. In vitro drug release from the encapsulated micr...
متن کاملThe effect of nanoparticle-enhanced photoacoustic stimulation on multipotent marrow stromal cells.
In this article, we report a novel nanoparticle-enhanced biophysical technique that differentiates multipotent marrow stromal cells (MSCs) toward osteoblasts. We show that a brief (10 min) daily nanoparticle-facilitated exposure of MSCs to nanosecond pulse laser-induced photoacoustic (PA) stimulation enhances their differentiation toward osteoblasts. To observe osteodifferentiation under PA sti...
متن کاملIn vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold
PURPOSE In the present study, the fabrication of novel p(N-isopropylacrylamide-co-butyl methylacrylate) (PIB) nanogels was combined with boron-containing mesoporous bioactive glass (B-MBG) scaffolds in order to improve the mechanical properties of PIB nanogels alone. Scaffolds were tested for mechanical strength and the ability to promote new bone formation in vivo. PATIENTS AND METHODS To ev...
متن کامل